

Technical Director
Airflow Sciences Corporation
bdumont@airflowsciences.com
734-525-0300

SCR Flow Modeling

- Basic Introduction
- Case Studies
 - Scherer 3 & 4 (Physical Model, design phase)
 - Miller 3 (CFD, to address maintenance concerns)

Why is Flow Distribution Important to SCRs?

- Performance
 - Gas velocity uniformity
 - Uniform NH3-to-NOx ratio
 - Thermal mixing
 - Ash capture / build-up
- Operating costs
 - Pressure drop
 - Erosion
 - Corrosion

Fluid Dynamic Design Methods

- Physical Flow Modeling
 - Lab representation of geometry
 - Typical scale 1:8 to 1:16
 - "Cold flow" modeling
 - Visualize flow with smoke
 - Simulate ash deposition
 - Measure flow properties:
 - velocity, pressure, tracer gas

Typical 1/12 scale physical model

• Turning vanes

- AIG w/static mixers
- Economizer bypass
- Economizer outlet
- LPA screen

• Vanes

Rectifier

Catalyst layers

Air heater

Dampers

Fluid Dynamic Design Methods

Computational Fluid Dynamics (CFD)

Numerical simulation of flow

Utilize high speed computers and sophisticated software

Calculate flow properties

Velocity & Pressure

- Temperature
- Ammonia
- Particle streamlines

SCR Performance Goals

- Uniform velocity
- Uniform temperature
- Uniform NH3-to-NOx ratio
- Avoid ash build up, LPA carryover
- Minimize DP

SCR Velocity Distribution

- Velocity profile
 - At AIG
 - At SCR inlet
 - At AH inlet
- Directionality
 - At SCR inlet

SCR Thermal Mixing

- Economizer gas bypass used to boost SCR inlet gas temperature under low load operation
- Extract hot gas at econ inlet
- Inject into cooler econ outlet stream
- Sounds simple enough, but there are many options and competing design elements

Without mixer, $\Delta T = \pm 83$ °F With mixer, $\Delta T = \pm 15$ °F

SCR Ammonia Injection

- Tracer gas in physical model
- Species tracking in CFD

Ash Deposition

Duct floors

Turning vanes

Catalyst

Ash Deposition – Model Testing

Drop out

Re-entrainment

Model Accuracy

- Data for detailed correlation between models and actual plant operations is unfortunately limited
 - Detailed traverses at catalyst often not performed
 - Data in ductwork sometimes available
 - Tend to go by industry experience on whether catalyst performance goals are met
- In cases where CFD and physical models are both used, predictions are often within engineering tolerances (~10-20%), but not always
- Further analysis is needed and in progress

Points to Remember

- Gas flow patterns have significant impact on the performance of SCRs
- Analysis and design tools include physical and CFD flow modeling
- Models are used to optimize the design of flow control devices to achieve fluid dynamic goals
 - Ductwork, turning vanes, baffles
 - Mixers, injection systems
 - LPA mitigation baffles, screens, and hoppers

2 Case Studies

- Scherer 3 & 4 Physical model
- Plant Miller CFD models

Case 1 Scherer Units 3 & 4 SCR Modeling

New SCRs on existing Units

Project Overview

- Objective
 - Develop design of flow devices to optimize SCR performance
- Methods
 - Modeling for flow device design and NH3 mixing verification
- Domain
 - Start at Economizer
 - End at Air Heater Inlet
- Flow conditions
 - Peak, Full, Minimum and Bypass Mode

Modeling Goals

- Flow uniformity
 - Velocity downstream of AIG:

80% of pts within 10% (Target) or 15% (Min) of avg, 100% of pts within 15% of avg

Velocity upstream of LPA Screen:

100% of pts within 15% of avg

Velocity at reactor inlet:

90% of pts within 10% (Target) or 15% (Min) of avg 100% of pts within 15% (Target) or 20% (Min) of avg

Velocity at Air Heater:

100% of pts within 25%(Target) or 35% (Minimum) of avg

NH3 Distribution at reactor inlet:

<3% RMS (Target), <5% (Minimum)

- Minimize pressure drop
- Avoid ash accumulation

Model Results Overview Peak Load

<u>Parameter</u>	Target Goal	Model Result -Peak
Velocity Downstream AIG	80% of pts within 10% of average	97.9%
Velocity Downstream AIG	100% of points within 15% of average	100%
Velocity Upstream LPA Screen	100% of points within 15% of average * goals changed during project	54.3%
Velocity Upstream first catalyst	90% of points within 10% of average	96.3%
Velocity Upstream first catalyst	100% of pts within 15% of average	97.5%
NH3 Distribution	RMS <3%	2.6% RMS
Velocity at Air Heater Inlet	100% of points within 25% of average min goal 100% of pts within 35% of avg	87.5% 100%
Total pressure drop, economizer outlet to air heater inlet	Excluding catalyst pressure loss	3.89"H2O

Physical Model

- Methodology
 - 1/12 scale model represents geometry
 - Scaled flow rates to match velocity head between model and full scale
 - Incorporates important structure (vanes, trusses)
 - Catalyst modeled as honeycomb and perforated plates

Measurement techniques

- Velocities using vane anemometer, hot wire
- Pressures using pitot probe
- Ammonia injection simulated with tracer gas
- Ash drop-out and re-entrainment simulated with salt

Physical Model Results Summary

Test Plane

Ash Testing

Purpose

- Determine areas where ash will drop out at reduced loads
- Examine if ash is properly re-entrained when higher load is restored

Assumptions

- Model dust behaves similarly to ash
 - » Utilize wind tunnel data to compare model dust to actual ash
 - » Run model at correct velocity ratio to provide best comparison
- Ash is not wet, cindered/hardened, packed solid in a cavity, etc.

Ash Deposition Testing Process

- Low load velocity setting
- Dust injected at economizer and downstream of AIG
- Dust injected until a stable depth was achieved

Ash Re-Entrainment Testing Process

- Dust was deposited on horizontal surfaces to approximately 0.5-1" depth
- Flow was slowly increased to full load velocity
- Ash re-entrainment was observed and documented

Case 2: Miller Econ Hopper Screen Pluggage

What's the Problem?

Pleated Screen

Valley

DP slowly increases as the unit runs

Why? LPA screen becomes plugged

Peak

Approximate

Edge

of Pluggage

Pleated Screen Details Must Be Included

Particle Characterization

- Plugging particles measured
- Drag and rebound characteristics of LPA

How to model changes due to buildup?

- 3 conditions modeled:
 - Clean, partially plugged, strongly plugged

5mm Particles Striking the Screen

Clean on right, strongly plugged on left

Some Shift in Pluggage Pattern over Time

Clean

Partial Plugged

Strongly Plugged

Design Changes - Baffles

Design Changes – "Hats"

Drastically Reduced Impacts

Baseline on left, final design on right

Drastically Reduced Impacts

Results

- Initial results, through June 2008, indicate that pressure drop across the screen versus time is staying reasonably stable
- Ian Mylenbush will present recent outage observations

Case 3: Plant Miller Unit 3 SCR Hood Vanes

- Hood vanes designed by original flow modeler
- Severe ash buildup found on the vanes
- Periodically, clumps of ash would avalanche down into the SCR
- How to reduce the buildup?

Hood Vane Geometry

• Big, arching vanes

Buildup

Buildup

Baseline CFD results

- Large areas of low velocity on back sides of vanes
- Ash buildup a concern under 25 fps

Options?

- Replacing vanes wholesale is deemed too expensive/intrusive
- 3 possible vane modifications stand out
- Critical that modification does 2 things:
 - Reduce ash accumulation
 - Retain flow uniformity at catalyst inlet

Design 1

- Long slots cut in vanes
 - 2 slots in each vane along entire width of the vane

Design 1 Results

- Reduced low-velocity zones between vanes
- Baseline on left, Design 1 on right

Design 2

Angle iron on underside of vanes

Design 2 Results

- Regions of low velocity are no longer in areas where buildup can occur
- Baseline on left, Design 2 on right

Design 3

- Perforate a portion of each vane
- Very challenging to model hole details must be included
 - 3d "slice" model employed
 - Inlet conditions differed new baseline run

Design 3 Results

Minor global changes, but definite local changes near holes

Which to select?

- All three seem to offer significantly reduced ash accumulation, varying level of difficulty to install
- Plant decides to perform an experiment install all three in different areas

Questions?

